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SUMMARY

HCN1 hyperpolarization-activated cation chan-
nels act as an inhibitory constraint of both spatial
learning and synaptic integration and long-term
plasticity in the distal dendrites of hippocampal
CA1 pyramidal neurons. However, as HCN1
channels provide an excitatory current, the
mechanism of their inhibitory action remains
unclear. Here we report that HCN1 channels
also constrain CA1 distal dendritic Ca2+ spikes,
which have been implicated in the induction of
LTP at distal excitatory synapses. Our experi-
mental and computational results indicate that
HCN1 channels provide both an active shunt
conductance that decreases the temporal inte-
gration of distal EPSPs and a tonic depolarizing
current that increases resting inactivation of
T-type and N-type voltage-gated Ca2+ channels,
which contribute to the Ca2+ spikes. This dual
mechanism may provide a general means by
which HCN channels regulate dendritic excit-
ability.

INTRODUCTION

Hippocampal activity-dependent long-term synaptic

plasticity is widely thought to be a key cellular substrate

for spatial learning and memory (Morris et al., 2003). Due

to the cooperative and associative nature of such forms

of plasticity, the individual postsynaptic potentials from

a large number of synaptic inputs must be integrated by

neuronal dendrites to elicit a postsynaptic response suffi-

cient to induce plastic changes. Over the past several

years it has become clear that dendrites are endowed

with a wide array of voltage-gated ion channels that shape

the integration of synaptic inputs and enable the active

processing of synaptic information (London and Hausser,

2005; Magee and Johnston, 2005). Although much is now

known about the molecular mechanisms underlying
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synaptic plasticity, we understand less about how the ac-

tive integrative properties of neuronal dendrites influence

the induction of synaptic plasticity to regulate learning

and memory.

Here we focus on the role of the hyperpolarization-ac-

tivated cation current (Ih), encoded by the HCN channel

gene family (HCN1-4; Robinson and Siegelbaum, 2003),

in the regulation of dendritic excitability and long-term

synaptic plasticity in hippocampal CA1 pyramidal neu-

rons. HCN1 is highly expressed in the apical dendrites

of the CA1 neurons in a gradient of increasing density

with increasing distance from the soma (Lorincz et al.,

2002; Magee, 1998; Notomi and Shigemoto, 2004; San-

toro et al., 2000). Mice with a forebrain-restricted dele-

tion of HCN1 show an increase in spatial learning and

an increase in temporal integration and long-term po-

tentiation (LTP) of EPSPs generated at the perforant

path (PP) inputs to the CA1 neurons (Nolan et al.,

2004). These inputs, which arise from layer 3 neurons

of entorhinal cortex, terminate on the distal CA1 den-

drites in stratum lacunosum moleculare (SLM), the site

of greatest HCN1 channel density. Thus, HCN1

channels exert an inhibitory constraint on dendritic inte-

gration and synaptic plasticity at the PP inputs to CA1

pyramidal neurons and constrain hippocampal-depen-

dent spatial learning.

The inhibitory effect of HCN1 revealed by its genetic

deletion is consistent with previous studies on the role of

Ih in dendritic integration. Application of the organic Ih
antagonist ZD7288 enhances the magnitude of the volt-

age change during an EPSP and slows the time course

of EPSP decay, increasing temporal integration in both

CA1 pyramidal neurons (Magee, 1998, 1999) and neocor-

tical layer 5 pyramidal cells (Stuart and Spruston, 1998;

Williams and Stuart, 2000; Berger et al., 2003). Blockade

of Ih also facilitates the firing of local spikes in CA1 den-

drites in stratum radiatum (Magee, 1999; Poolos et al.,

2002) and lowers the threshold for the activation of den-

dritic Ca2+ spikes triggered by backpropagating action

potentials in layer 5 neurons (Berger et al., 2003). Con-

versely, upregulation of Ih in CA1 neurons by the anticon-

vulsant lamotrigine (Poolos et al., 2002) and in entorhinal
er Inc.
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cortex neurons by dopamine (Rosenkranz and Johnston,

2006) inhibits firing of dendritic action potentials.

Previous studies have ascribed the inhibitory actions of

Ih to its being partially active at the resting potential,

providing a shunt conductance that decreases input resis-

tance, membrane time constant, and temporal integra-

tion, which decreases the depolarization during an EPSP

(Magee, 1998; Stuart and Spruston, 1998; Poolos et al.,

2002). However, since the Ih reversal potential (��30

mV) is positive to the threshold for spike firing (�50 to

�40 mV), Ih generates an excitatory current at subthresh-

old voltages. As a result, blockade of Ih hyperpolarizes the

resting membrane by 5–10 mV, which counteracts any in-

crease in the magnitude of a subthreshold EPSP due to

the increase in input resistance. In a simple model

containing only Ih, a leak conductance, and an excitatory

synaptic input, the absolute peak EPSP voltage is actually

closer to threshold in the presence of Ih than in its ab-

sence. Indeed, the excitatory effect of Ih underlies its con-

tribution to spontaneous rhythmic firing in both the heart

and in central neurons (Robinson and Siegelbaum,

2003). Thus, despite the general finding that Ih exerts a

potent inhibitory control on dendritic excitability, the

mechanism underlying this inhibitory action and its con-

straint on the induction of LTP remains unclear.

In this study we have investigated the possibility that

HCN channels produce their inhibitory effects on synaptic

plasticity by nonlinear interactions with other dendritic

voltage-gated channels. In particular, we have used

Ca2+ imaging to investigate the effects of Ih on local regen-

erative calcium spikes in CA1 neuron distal dendrites

(Golding et al., 2002; Wei et al., 2001), as such spikes

have been suggested to be important for the induction

of PP LTP (Golding et al., 2002). We find that either genetic

deletion of HCN1 or pharmacological blockade of Ih
enhances the amplitude and duration of distal nonlinear

dendritic Ca2+ events evoked by a brief tetanic burst of

perforant path synaptic stimulation. Our computational

and experimental data indicate that this effect is due to

the combined action of the reduction in Ih to hyperpolarize

the membrane and enhance dendritic integration through

an increase in input resistance. The hyperpolarization

reduces resting inactivation of T-type and N-type volt-

age-gated calcium channels (VGCCs), which contribute

to Ca2+ influx during the dendritic spikes; the increase in

input resistance increases the amplitude of the EPSP,

helping to offset the inhibitory effects of hyperpolarization.

This mechanism is likely to contribute to the inhibitory

effects of Ih on dendritic excitability seen in a wide variety

of neurons. Moreover, regulation of HCN channel function

by modulatory transmitters may provide an important

physiological mechanism to dynamically control Ca2+-

dependent processes at distal dendrites.

RESULTS

Whole-cell recordings were obtained from CA1 pyramidal

neurons in acute hippocampal slices from wild-type (WT)
Neuron
and HCN1 KO (�/�) mice (Nolan et al., 2003). Neurons

were loaded with a low-affinity Ca2+-indicator dye (Ore-

gon Green BAPTA-5N) and a Ca2+-independent dye

(Alexa Fluor 594) to monitor dendritic structure

(Figure 1A; Experimental Procedures). Local PP inputs

were activated by a glass bipolar stimulating patch elec-

trode placed within 50–100 mm of the targeted branch

under visual guidance (Figure 1A). The somatic voltage

response was recorded under current-clamp conditions,

with inhibitory synaptic transmission blocked using both

GABAA and GABAB receptor antagonists. At the same

time we used two-photon microscopy to measure the

Ca2+ signals in the distal CA1 dendrites in stratum lacuno-

sum-moleculare (SLM), at least 50 mm past the main

branching point of the distal dendritic tuft (>400 mm from

the soma).

Burst Stimulation of PP Inputs Elicit Nonlinear
Dendritic Calcium Events in SLM Dendrites
We first characterized the Ca2+ events induced in distal

dendrites in response to a brief burst of PP synaptic stim-

ulation (ten stimuli at 100 Hz) similar to that used during

induction of PP LTP (Nolan et al., 2004). The burst stimulus

elicited a large transient increase in the Ca2+ fluorescence

signal in a continuous segment of SLM dendrite during 2D

scanning (�8 Hz) (Figure 1B). Ca2+ increases were

observed in both spines and dendrite shafts. However,

segments proximal to the active portion of a dendrite or

on adjacent branches showed little or no Ca2+ increase,

indicating that the Ca2+ event was localized to the distal

dendritic branch.

Previous studies in rat hippocampal slices found that

local glutamate application to distal CA1 neuron dendrites

(Cai et al., 2004; Wei et al., 2001) or burst stimulation of

distal synapses (Golding et al., 2002) can elicit local den-

dritic Ca2+ action potentials. To determine whether the

signals we observed in mouse hippocampal slices also

represent dendritic Ca2+ spikes, we asked whether the re-

sponses displayed properties consistent with regenera-

tive activity. The peak Ca2+ signal in the distal dendritic

shaft (measured by the change in Oregon Green/Alexa

594 fluorescence ratio, normalized to baseline, DS/S0;

see Experimental Procedures) was quantified on a fast

timescale using linescan mode (500 Hz sampling). There

was a steep sigmoidal relationship between current stim-

ulus intensity and peak fluorescence change (Figures 1C

and 1D), indicative of a nonlinear regenerative response.

At low stimulus intensities (typically <40 mA) there was little

dendritic fluorescence change despite a measurable

somatic depolarization (Figure 1E), consistent with the

need for recruitment of a threshold number of distal

inputs. The peak Ca2+ change reached a maximum value

of 100.4% ± 8.9% at high stimulus intensities (Figure 1D;

n = 22). In contrast, the peak somatic voltage response

continued to increase with increasing stimulus strength

(Figure 1F), perhaps reflecting the further recruitment of

synapses and/or Ca2+ spikes at different dendritic

branches.
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Figure 1. Burst Stimulation of PP Inputs

Elicits Nonlinear Distal Ca2+ Events

(A) Schematic of experiment. Whole-cell re-

cordings of CA1 pyramidal neurons were ob-

tained using a patch pipette (bottom of image)

filled with a Ca2+-independent red fluorescent

dye (25 mM Alexa 594; signal R) and a Ca2+-in-

dicator green fluorescent dye (500 mM OGB-

5N; signal G). An extracellular stimulating elec-

trode (top of image) filled with Alexa 594 was

placed �50 mm from a dendrite of interest

(white box) in stratum lacunosum-moleculare

(SLM) under two-photon visual guidance.

(B) Visualization of SLM dendrite segment

using a 2D scan. (Left) Image of dendrite mor-

phology. (Right) Ca2+-sensitive fluorescence

before (left) and during (right) a Ca2+ spike

induced by synaptic stimulation (ten stimuli at

100 Hz). Pseudocolor image in which warmer

colors indicate brighter Ca2+ dye fluorescence.

Differences in resting fluorescence reflect de-

gree to which dendrite region is in focal plane.

(C) Ca2+ signal transients with burst stimulation

using 40, 50, and 60 mA currents measured in

linescan mode through dendritic shaft, ex-

pressed as percent change in G/R (defined as

DS/S0 3 100%, where S = G/R; see Experi-

mental Procedures).

(D) Plot of normalized peak Ca2+ signal versus stimulus current. Distal Ca2+ signals show a nonlinear sigmoidal dependence on stimulus current.

(E) Voltage responses to PP burst stimulation corresponding to Ca2+ signals in panel (D).

(F) Plot of peak depolarization (from panel [E]) versus stimulus current.
The Ca2+ events had a remarkably long duration, with

a mean half-width of 315.5 ± 23.6 ms. Often a plateau

phase was observed that was followed by a faster decay

to baseline, with an 80%–20% decay time of 258.8 ±

31.7 ms (Figure 2A, black). In contrast, the Ca2+ signals

rose more rapidly (77.8 ± 4.84 ms; 20%–80% rise time),

comparable to the duration of the stimulus burst. The

time course of these Ca2+ signals is similar to that of the

distal Ca2+ spikes observed in rat slice cultures (Cai

et al., 2004; Wei et al., 2001) but is much longer than the

dendritic Ca2+ spikes observed in the distal apical trunk

of CA1 neurons in stratum radiatum (Golding et al.,

2002; Schiller et al., 1997). Such long events may reflect

unique properties of voltage-gated channels at more ter-

minal apical dendrites (Cai et al., 2004) and/or the large

NMDA/AMPA receptor ratio found at perforant path syn-

apses (Nicholson et al., 2006; Otmakhova et al., 2002).

Given the long duration and large amplitude of these

Ca2+ signals, it was important to verify that the dye was

not saturated. We therefore measured the maximal Ca2+

signal under saturating conditions in response to steady-

state bath application of the Ca2+ ionophore ionomycin

in the presence of 2 mM external Ca2+ (Figure S1 available

online). The peak Ca2+ signal elicited by a synaptic burst

was equal to 44.9% ± 7.9% of the maximum signal with

ionomycin, indicating that slightly less than half of the

dye molecules were complexed with Ca2+. Based on our

measured value for the Kd of the dye of 13.4 mM (Fig-

ure S1), we calculate that the fluorescence change elicited
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by a synaptic burst corresponded to a peak free [Ca2+]

value of �11 mM, a postsynaptic level sufficient for induc-

tion of LTP (Yang et al., 1999).

Despite the relatively strong synaptic stimulation, the

somatic voltage responses were usually subthreshold

(Figure 1E, F), with axonal spiking observed in only 8 out

of 22 cells. On average, the absolute somatic depolariza-

tion reached 12.0 ± 0.8 mV, with a fast rise (60.14 ±

7.3 ms) and slower decay (80%–20%) time (490 ±

40.7 ms). These results are consistent with previous find-

ings that SLM inputs are typically weak and inefficient at

driving somatic spikes (Golding and Spruston, 1998; Jar-

sky et al., 2005) but can elicit long-lasting distal Ca2+ spikes

(Cai et al., 2004; Wei et al., 2001). It is likely that the local de-

polarization in the distal dendrite is several-fold greater

than that observed in the soma and sufficient for triggering

regenerative activity, given the attenuation of voltage sig-

nals along apical CA1 dendrites (Golding et al., 2005).

Deletion of HCN1 Enhances Both Peak Amplitude
and Duration of Distal Dendritic Ca2+ Events
To examine the influence of HCN1 on distal dendritic

excitability, we compared the dendritic Ca2+ events in

HCN1 knockout (KO) mice to those in wild-type (WT) litter-

mates. Similar to previous results (Nolan et al., 2004), we

found that the somatic resting potential of the KO mice

(�74.9 ± 2.4 mV, n = 6) was significantly more negative

than that of wild-type mice (�68.1 ± 1.3 mV, n = 6). Despite

this hyperpolarization, PP stimulation elicited a Ca2+
er Inc.
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Figure 2. HCN1 Deletion Increases Mag-

nitude and Prolongs Duration of Distal

Ca2+ Events

(A) Distal Ca2+ transient in SLM dendrites in

HCN1 knockout mouse (KO; red trace) and

wild-type littermate (WT; black). Vertical scale

bar represents fluorescence signal (DS/S0 3

100%).

(B) Somatic voltage in response to PP burst

stimulation in KO and WT mice. Note that rest-

ing potential in KO mice was hyperpolarized

relative to WT mice by 7 mV.

(C) Mean peak Ca2+ signal and duration in KO

mice (�/�) versus WT littermates (+/+). (DS/

S0: WT = 131.8% ± 8.5%, n = 7; KO = 174.8 ±

15.0, n = 7; p < 0.03; unpaired t test; Half-width:

WT = 340 ± 33.7 ms; KO: HW = 768 ± 93.3 ms;

p < 0.01). Error bars represent standard error.

Asterisks denote statistical significance.

(D) Mean somatic voltage responses in KO ver-

sus WT mice. Peak depolarization (DV): WT =

8.6 ± 0.7 mV; KO = 16.3 ± 1.9 mV. Half-width:

WT = 224.8 ± 21.9 ms; KO = 367.9 ± 52.3 ms.

Error bars represent standard error. Asterisks

denote statistical significance.

(E) Effect of HCN1 deletion on peak Ca2+

response versus stimulus current relation.

Average sigmoid relationship between peak

Ca2+ and stimulus strength in KO (red) and

WT (black) littermates from fits of Boltzmann

relation to individual curves. The KO mice exhibit a slight left-shifted half-maximal stimulus value (I1/2: WT = 45.2 ± 3.0 mA [n = 5]; KO = 35.2 ± 3.8 mA

[n = 5]; p = 0.075). The slopes (k) of the relationships were not significantly different (k: WT = 3.9 ± 1.2; KO = 5.6 ± 1.9; p = 0.45).

(F) Effect of HCN1 deletion on resting potential (light squares, dashed lines) and peak EPSP voltage (solid squares). Resting potentials (Vrest) were

more negative in KO mice relative to WT mice (WT: Vrest = �68.1 ± 1.3 mV, n = 6; KO: Vrest = �74.9 ± 2.4 mV, n = 6; p < 0.05). The peak potential

during EPSP elicited by PP burst stimulation (Vpeak) was similar in WT and KO neurons (WT: Vpeak = �59.9 ± 1.4 mV [n = 6]; KO: Vpeak = �59.7 ±

2.8 mV [n = 6]; p = 0.96). Vertical lines indicate the magnitude of depolarization due to the burst stimulus. Error bars represent standard error.
transient in the distal dendrites of the KO mice that was

both larger in peak amplitude and strikingly longer in dura-

tion than the corresponding signals from WT littermates

(Figures 2A and 2C).

Deletion of HCN1 increased the peak Ca2+ signal (DS/

S0) by �30%, from 131.8% ± 8.5% (n = 7) in WT mice

to 174.8% ± 15.0% (n = 7) in KO mice (p < 0.03, Student’s

t test). The effect on duration was even more dramatic,

with half-width increasing over 2-fold, from 340 ± 33.7 ms

in the WT mice to 768 ± 93.3 ms in the mutants (p <

0.01). The somatic voltage responses to PP burst stimu-

lation displayed a similar trend (Figures 2B and 2D), with

the KO mice exhibiting a larger peak depolarization

(16.3 ± 1.9 mV) and longer half-width (367.9 ± 52.3 ms)

compared to the values in WT mice (8.6 ± 0.7 mV and

224.8 ± 21.9 ms). There was no significant difference

in either Ca2+ rise times (WT: 51 ± 4.7 ms versus KO:

68 ± 8 ms; p > 0.05) or 80%–20% decay times (WT:

300 ± 38.7 ms, KO: 442.3 ± 82.8 ms; p > 0.05) between

genotypes, suggesting that the prolonged time course

of the distal events was not due to altered Ca2+ buffering

and/or extrusion.

The similarity of decay times of the Ca2+ transients indi-

cates that the major effect of the KO was to prolong the
Neuron
duration of the plateau phase and increase its amplitude.

Based on the dye Kd, the 30% increase in peak fluores-

cence change upon HCN1 deletion represents a 70%

increase in peak [Ca2+], to a value of 18.9 mM, consistent

with the increase in PP LTP in the HCN1 KO mice (Nolan

et al., 2004).

To determine whether deletion of HCN1 lowers the

threshold current for generating Ca2+ spikes, we com-

pared the relationship between peak Ca2+ and stimulus

intensity in WT versus KO mice (Figure 2E). HCN1 deletion

showed a trend to produce a small decrease in the stimu-

lus current needed to elicit distal Ca2+ events, with KO

mice exhibiting a half-maximum stimulus current (I1/2 =

35.2 ± 3.8 mA, n = 5) that was �22% lower than the value

in WT mice (I1/2 = 45.2 ± 3.0 mA, n = 5), although the differ-

ence did not attain statistical significance (p = 0.075). The

peak somatic voltage during the burst EPSP was also

relatively unchanged by HCN1 deletion (Figure 2F; peak

voltage = �59.9 ± 1.4 mV in WT versus �59.7 ± 2.8 mV

in KO mice; p = 0.96), consistent with a relatively un-

changed threshold. The lack of change in absolute peak

EPSP voltage is likely due to the offsetting effects of en-

hanced integration (due to the increase in input resistance)

versus membrane hyperpolarization upon HCN1 deletion.
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Figure 3. Pharmacological Blockade of

Ih with ZD7288 Increases Amplitude and

Duration of Distal Ca2+ Events

(A) Example Ca2+ (top) and somatic voltage

(middle) responses from a WT mouse to PP

burst stimulation in the absence (black) and

presence (red) of ZD7288 (10 mM). (Bottom)

Hyperpolarization-induced voltage sag due to

activation of Ih in response to current steps

from �20 to �120 pA was blocked with

ZD7288.

(B) Average half-width of distal Ca2+ events be-

fore and after application of ZD7288. Duration

of Ca2+ transients was significantly prolonged

(+57%) by ZD7288 (Control: HW = 345.1 ±

74.6 ms; ZD7288: HW = 541.7 ± 99.2 ms;

p < 0.01). Error bars represent standard error.

Asterisks denote statistical significance

compared to control.

(C) Average peak Ca2+ before and after applica-

tion of ZD7288. Peak Ca2+ levels were in-

creased by �17% in drug (Control: DS/S0 =

109.4% ± 18.6%; ZD7288: DS/S0 = 127.9% ±

17.8%; n = 7; paired t test, p < 0.01). Error

bars represent standard error. Asterisks denote

statistical significance compared to control.
Pharmacological Blockade of Ih Enhances
Distal Dendritic Calcium Events Specifically
in the Perforant Path
The dramatic prolongation and enhancement of the distal

Ca2+ transients in the HCN1 KO mice is surprising given

that the HCN1 channels generate a depolarizing current

and, moreover, should rapidly shut off within �20–50 ms

during depolarizing events (Magee, 1998). Since gene

deletions can result in reactive changes in expression of

other gene products, we tested the effects of acute phar-

macological blockade of Ih in WT mice with the organic

antagonist ZD7288. To minimize nonspecific actions of

this compound on synaptic transmission (Chen, 2004;

Chevaleyre and Castillo, 2002) and other channels (Felix

et al., 2003), we used relatively low concentrations of

drug (10 mM) and short times of exposure (10–15 min)

that were just sufficient to eliminate the characteristic

Ih-dependent depolarizing sag in voltage in response

to a somatic hyperpolarizing current step (Figure 3A).

Acute application of ZD7288 under these conditions

produced similar changes in the distal dendritic Ca2+ tran-

sient to those seen upon deletion of HCN1 (Figure 3). Thus

we observed an �17% increase in peak Ca2+ signal, from

109.4% ± 18.6% in the absence of drug to 127.9% ±

17.8% in the presence of ZD7288 (n = 7; p < 0.01). We

also found an �57% prolongation in the Ca2+ signal dura-

tion, from 345.3 ± 74.6 ms in the absence of drug to 541.7 ±

99.2 ms in the presence of blocker (p < 0.01). Ca2+ rise and

decay times in control conditions (tr = 72.33 ± 9.07 ms, td =

275 ± 97.01) and in the presence of ZD7288 (tr = 109.75 ±

6.38 ms, td = 464.33 ± 103.12 ms) showed no statistically

significant differences, similar to results with HCN1 dele-

tion. The similarity in effects of reducing Ih either by phar-
1080 Neuron 56, 1076–1089, December 20, 2007 ª2007 Elsevie
macological or genetic means suggests that the enhance-

ment in dendritic Ca2+ events reflects a specific effect due

to the loss of Ih, rather than a nonspecific effect or compen-

satory change in other channels.

If the enhancement in distal dendritic Ca2+ signals is in-

deed causally related to the loss of local Ih, then ZD7288

should produce much less of a change in Ca2+ signals

observed in stratum radiatum (SR) in response to SC stim-

ulation, as the levels of HCN1 and Ih are much lower in

proximal dendrites than in distal dendrites. Indeed, burst

stimulation of SC inputs identical to that used in the PP

experiments elicited a proximal Ca2+ response in SR

that showed little change following blockade of Ih with

ZD7288 (Figure 4A1 traces). There was, if anything,

a small, statistically insignificant, decrease in Ca2+ signal

duration (Figure 4B; Control HW = 150.67 ms ± 4.64 ms;

ZD7288 HW = 144 ± 2.26 ms, n = 6, p = 0.14) and peak

amplitude (Figure 4C; Control DS/S0 = 292.59% ±

29.8%, ZD7288 DS/S0 = 226.36% ± 35.1%, p = 0.08).

The lack of augmentation of the Ca2+ signal elicited by

SC stimulation was not due to use of the higher-affinity

Ca2+ dye, Fluo-4, in these experiments (needed to mea-

sure the lower-amplitude proximal Ca2+ signals), as

Fluo-4 detected a large prolongation in Ca2+ event dura-

tion at the distal dendrites in response to PP stimulation

(Figures 4A2 and 4B; Control HW = 558.6 ms ± 118.11,

ZD7288 HW = 995 ± 245.53 ms, p < 0.01). However, the

peak of the Fluo-4 Ca2+ signal in the distal dendrites did

not show an augmentation following Ih blockade (Control

146.33% ± 17.7%, ZD7288 145.27% ± 14.1%; p =

0.92), most likely due to saturation of the higher-affinity

dye by the very large distal Ca2+ transient. The selective

ability of ZD7288 to enhance the distal but not proximal
r Inc.
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Figure 4. Blockade of Ih Prolongs Ca2+ Signals Elicited by Perforant Path but Not Schaffer Collateral Stimulation

Dendritic Ca2+ signals in proximal or distal CA1 dendrites in response to 100 Hz burst stimulation (10 stimuli) of SC or PP inputs, respectively, under

control conditions (black) or in the presence of 10 mM ZD7288 (red). Ca2+ signals were measured with higher affinity Ca2+ dye, Fluo-4 (400 mM).

(A1) Effects of ZD7288 on proximal dendritic Ca2+ signals (top) and somatic voltage response (bottom) elicited by stimulation of SC synapses. (A2)

Effects of ZD7288 on distal dendritic Ca2+ signals and somatic voltage response induced by burst stimulation of PP inputs. Distal but not proximal

Fluo-4 Ca2+ signals are prolonged by ZD7288.

(B) Effects of ZD7288 on Fluo-4 Ca2+ signal half-width duration in distal dendrites in response to PP stimulation or in proximal dendrites in response to

SC stimulation. Grey symbols and lines show half-width durations for each individual experiment. Black symbols and lines show mean values. Values

for distal dendrites in response to PP stimulation: Control: HW = 558.6 ± 118.11 ms; ZD7288: HW = 995 ± 245.53 ms; n = 10; p < 0.01, paired t test.

Values for SR dendrites with SC stimulation: Control: HW = 150.67 ± 4.64 ms; ZD7288: HW = 144 ± 2.26 ms; n = 6, p = 0.14.

(C) Summary of effects of ZD7288 on HW and peak Ca2+ signals (DS/S0) elicited by PP (Control: DS/S0 = 146.3% ± 17.7%, ZD7288: DS/S0 =

145.3% ± 14.1%; p = 0.92) and SC stimulation (Control DS/S0 = 292.59% ± 29.8%, ZD7288 DS/S0 = 226.36% ± 35.1%, p = 0.08). Error bars represent

standard error.
Ca2+ signal supports the view that the calcium enhance-

ment induced by HCN channel blockade is due to the

local reduction of Ih.

Does the prolongation of the distal Ca2+ signal reflect

a prolongation of the distal voltage response to synaptic

stimulation? We examined this question by obtaining

whole-cell dendritic voltage recordings in mid to distal

SR (85 and 200 mm from the soma) (Figure 5A). Consistent

with our imaging data, PP burst stimulation elicited large,

long-lasting depolarizing responses in the dendrites, and

these responses were significantly prolonged by ZD7288

(10 mm) (Figures 5B1-2 and C1-2). This prolongation was

primarily due to an increase in the afterdepolarization

following the end of stimulation, indicating an increase in

local excitatory dendritic current. In contrast, ZD7288 pro-

duced little prolongation of the dendritic voltage response

to SC stimulation, consistent with a specific effect due to Ih
blockade (Figures 5D1 and 5D2).

Pharmacological Analysis of Distal Ca2+

Events in SLM
Which ion channels and receptors mediate the distal Ca2+

events and regulate their properties by interacting with Ih?

We first examined the importance of ionotropic glutamate

receptors, which have been previously shown to trigger

distal Ca2+ spikes (Golding et al., 2002; Wei et al., 2001).

Bath application of APV (50 mM) or CNQX (10 mM) to

block NMDA receptors or AMPA receptors, respectively,

caused a substantial reduction in both the peak somatic
Neuron
voltage response and amplitude of the distal Ca2+ signal

in response to a burst of PP stimulation (Figures 6A, 6B,

and 6G). Thus, application of APV reduced the Ca2+ signal

(DS/S0) to 11.9% ± 2.3% of its control value (p < 0.01,

n = 5) and decreased peak somatic voltage amplitude

to 62.5% ± 5.0% of control (p < 0.05, n = 5). Similarly,

CNQX reduced the Ca2+ signal to 24.5% ± 8.8% (n = 4,

p < 0.05) and voltage amplitude to 26.5% ± 10.0%

(n = 4, p < 0.05) of their initial levels, indicating the impor-

tance of both AMPA and NMDA receptors.

Are NMDA receptors sufficient for generating the local

nonlinear Ca2+ signals, as found for Ca2+ spikes in basal

dendrites of neocortical pyramidal neurons (Schiller

et al., 2000), or are other sources of Ca2+ also required?

We first examined the involvement of Ni2+-sensitive and

L-type voltage-gated Ca2+ channels, which have been

implicated in distal LTP (Golding et al., 2002; Remondes

and Schuman, 2003). However, combined application of

50 mM Ni2+ (an inhibitor of R- and T-type VGCCs) and

20 mM nimodipine (a dihydropyridine L-type VGCC

blocker) had little effect on either the dendritic Ca2+ signal

(DS/S0 = 99.3% ± 3.6% of control) or on the somatic EPSP

(DV = 86.1% ± 4.6% of control, n = 4, p = 0.89) in response

to a burst of PP stimuli (Figures 6C and 6G). This finding is

in contrast to the sensitivity of Ca2+ transients in SR to

these antagonists, as previously reported (Christie et al.,

1995) and confirmed by our own experiments (Figure S4).

We next focused on the CaV3.3 T-type channels

and N-type channels, two types of Ni2+- and
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Figure 5. Acute Blockade of Ih Prolongs Duration of the Long-Lasting Dendritic Depolarization in Response to PP but Not SC

Stimulation

(A) Schematic of the recording configuration. Whole-cell current-clamp voltage recordings were obtained from the apical trunk of a CA1 pyramidal

neuron dendrite. Extracellular electrodes were positioned to stimulate either PP inputs in SLM or SC inputs in SR. (Inset) Brightfield Alexa 594 fluo-

rescent image of a representative recording. Soma of patch-clamped dendrite is visible in the CA1 pyramidal cell layer. Scale bar, 20 mm.

(B1) Voltage responses to low, intermediate, or strong PP stimulation from a whole-cell dendritic recording obtained �200 mm from the center of the

soma, in the absence (black traces) or presence (red traces) of ZD7288 (10 mM).

(C1) Voltage responses in absence or presence of ZD7288 to low, intermediate, or strong PP stimulation from a second dendritic recording �85 mm

from soma.

(D1) Dendritic voltage responses to SC stimulation from same recording shown in (C) in the absence and presence of ZD7288.

(B2–D2) Plots of full-width half-maximum (FWHM) duration of voltage responses as function of stimulus intensity in the absence (black circles) or pres-

ence (red circles) of ZD7288 for experiments shown in (B1)–(D1).
nimodipine-insensitive VGCCs that are expressed in distal

CA1 dendrites (McKay et al., 2006; Mills et al., 1994; West-

enbroek et al., 1992). Indeed, the peak Ca2+ transients

were substantially reduced by application of either the

general T-type channel antagonist mibefradil (Figures 6E

and 6G; DS/S0 = 53% ± 11.4% of control, p < 0.05; n = 5)

or by the N-type channel antagonist u-conotoxin GVIA

(Figures 6D and 6G; DS/S0 = 57.3% ± 9.6% of control,

p < 0.05; n = 5). However, the peak EPSP at the soma

was only slightly reduced by either mibefradil (EPSP =

80% ± 9.9% of control, n = 5) or u-conotoxin GVIA

(EPSP = 90.8% ± 14.5% of control, n = 4) (Figures 6D,

6E, and 6G). Importantly, neither agent caused a signifi-

cant change in the PP field EPSP (Figure S2), indicating

that they did not alter transmitter release from the PP

terminals (or cause significant block of AMPA or NMDA

receptors). Thus, the distal Ca2+ spikes appear to recruit

both CaV3.3 T-type and CaV2.2 N-type voltage-gated

Ca2+ channels. Although mibefradil can also block L-

type and R-type VGCCs (Randall and Tsien, 1997), our
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finding that the distal Ca2+ events are insensitive to Ni2+

and high concentrations of nimodipine indicates that the

effects of mibefradil do indeed reflect T-type channel

blockade. We also think it unlikely that the effects of mibe-

fradil are due to block of voltage-gated Na+ channels (Eller

et al., 2000), since we find that low concentrations of TTX

(30 nM) that preferentially block dendritic Na+ spikes

(Gasparini et al., 2004) do not reduce the amplitude of

the local distal Ca2+ signal (Figure S5). Finally, we found

that Ca2+ release from intracellular stores does not con-

tribute to the distal Ca2+ signals, because blockade of

the smooth endoplasmic reticulum Ca2+ (SERCA) pump

with 30 mM cyclopiazonic acid (CPA) had no effect on

the distal Ca2+ transient (Figures 6F and 6G; DS/S0 =

110.7% ± 14.4% of control, n = 6, p = 0.42).

A Computational Model for the Enhancement
in the Distal Ca2+ Transient upon Ih Blockade
To gain further insight into the mechanism by which Ih
blockade alters the distal Ca2+ transients, we developed
r Inc.
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Figure 6. Ca2+ Signals in Distal Dendrites

Are Initiated by Activation of NMDA and

AMPA Receptors, and Mediated by

Ni2+-Insensitive T-Type and N-Type

Voltage-Gated Ca2+ Channels

(A–F) Examples of effects of pharmacological

agents on distal Ca2+ signals (top) and somatic

voltage responses (bottom) elicited by burst

stimulation of PP inputs. Black, control traces.

Red, traces obtained in the presence of the fol-

lowing blockers: (A) 50 mM D-APV, an NMDAR

antagonist; (B) 20 mM CNQX, an AMPAR an-

tagonist; (C) combination of 50 mM Ni2+

(CaV3.2 T-type and R-type VGCC antagonist)

and 20 mM nimodipine (L-type VGCC antago-

nist); (D) 1 mM u-conotoxin GVIA, N-type

VGCC antagonist; (E) 20 mM mibefradil, general

T-type channel antagonist; and (F) 30 mM

cyclopiazonic acid, a blocker of the SERCA

pump.

(G) Summary of effects of pharmacological

inhibitors on distal Ca2+ signal (black) and

somatic voltage response (gray). Asterisks

denote statistical significance comparing drug

versus control (p < 0.05). D-APV: Ca2+ signal

(DS/S0) reduced to 11.9% ± 2.3% of control

(p < 0.01, n = 5); DV = 62.5% ± 5.0% of control

(p < 0.05, n = 5). CNQX: DS/S0 = 32.7% ± 8.7%

of control (p < 0.01, n = 4); DV = 26.5% ± 10.0%

of control (p < 0.05, n = 4). Ni2+ + nimodipine:

DS/S0 = 99.3% ± 3.6% of control; DV =

86.1% ± 4.6% of control (p > 0.1 for both; n =

4). Mibefradil: DS/S0 = 53% ± 11.4% of control,

p < 0.05; DV = 80% ± 9.9% of control (p > 0.1;

n = 4). u-CTX GVIA: DS/S0 = 57.3% ± 9.6% of

control, p < 0.05; DV = 90.8% ± 14.5% of con-

trol, p > 0.1 (n = 4). CPA: DS/S0 = 110.7% ±

14.4% of control (p = 0.42; n = 6). Error bars

represent standard error.
a computational model representing an active distal den-

dritic branch with voltage-gated conductances, including

T-type and N-type VGCCs (see Supplemental Section 2).

In the presence of Ih, a simulated burst of synaptic activa-

tion of NMDA and AMPA receptors on the dendritic

branch evoked a strong depolarization that triggered

a nonlinear long-lasting spike (Figure 7A1). Removal of Ih
hyperpolarized the resting membrane by �6 mV, similar

to the hyperpolarization observed in HCN1 KO mice

(Nolan et al., 2004). Strikingly, the same synaptic stimula-

tion elicited a local Ca2+ spike whose duration was en-

hanced nearly 2-fold, with a smaller increase in peak ampli-

tude. In agreement with our somatic voltage recordings,

blockade of Ih did not affect the peak absolute voltage

reached during the burst of EPSPs prior to the spike, indi-

cating that the hyperpolarization upon loss of Ih is offset

by an increase in EPSP amplitude and temporal summation

due to the increase in input resistance. Interestingly, when

we examined a morphologically realistic model of a CA1

neuron, Ih blockade produced changes in somatic voltage

responses similar to our experimental data (Figure S3).

Next we focused on the single-compartment model to

gain insight into how removal of Ih altered the local Ca2+
Neuro
transient in the distal dendrites. Blockade of Ih nearly dou-

bled the peak Ca2+ current carried by the N- and T-type

VGCCs during a dendritic spike (95% increase) and mark-

edly prolonged the duration of Ca2+ influx (Figure 7A2).

Furthermore, when we included a Ca2+ dye and endoge-

nous Ca2+ buffering and transport in the model to calculate

the Ca2+ fluorescence signal (Figure 7A3; see Supplemen-

tal Material Section 2), removing Ih produced a large (90%)

increase in the peak Ca2+ signal and a 2-fold prolongation

of its duration (116% increase in HW) (Figure 7A3), similar

to our experimental findings (Figures 2 and 3). Importantly,

these modeling results were robust, as they were ob-

served over a wide range of parameter space for the volt-

age-gated Ca2+ channel kinetics (data not shown).

What is responsible for the pronounced increase in Ca2+

influx during the dendritic spikes in response to removal of

Ih? Analysis of the T-type and N-type VGCCs gating pa-

rameters revealed that the voltage-dependent activation

of both channels was similar during the Ca2+ spikes in

the presence and absence of Ih. However, the fraction of

inactivated channels both before and during the spikes

was significantly less when Ih was removed (Figure 7A4),

due to the hyperpolarization of the resting membrane.
n 56, 1076–1089, December 20, 2007 ª2007 Elsevier Inc. 1083
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Figure 7. Computational Model of Distal

Ca2+ Events and Effects of Ih Blockade

(A and B) Results from a single-compartment

model for Ca2+ spike elicited by PP burst stim-

ulation showing distal dendritic membrane

voltage (panels labeled 1), total VGCC current

(panels labeled 2), Ca2+-bound fraction of dye

(panels labeled 3), and T-type and N-type

VGCC inactivation gating variable (h, panels la-

beled 4). Simulations shown in the presence

(black traces) or absence (red traces) of Ih. (A)

Effects of Ih removal. (A1) Burst of 100 Hz syn-

aptic stimulation evoked a nonlinear voltage

response (Ca2+ spike). Removal of Ih hyperpo-

larized the resting membrane and enhanced

the duration of Ca2+ spike. (A2) The sum of

T-type and N-type Ca2+ current during Ca2+

spike shows enhanced Ca2+ influx upon re-

moval of Ih. (A3) The fraction of Ca2+-bound in-

dicator dye is enhanced and prolonged upon

removal of Ih, similar to our experimental re-

sults. (A4) Plot of inactivation gating variable

h for T-type and N-type VGCCs before (starting

values) and during Ca2+ spike (solid lines,

N-type; dashed lines, T-type), showing de-

creased inactivation upon removal of Ih. Note:

h = 1 when all inactivation gates are open.

(B) Effects of Ih removal when membrane

hyperpolarization is prevented by shifting the

reversal potential of the leak conductance

from �80.0 to �72.9 mV. Parameters defined

as in (A). Error bars represent standard error.

(C) Effects of membrane hyperpolarization

alone in maintained presence of Ih. Black

traces, control. Red traces, during injection of

a �0.011 nA hyperpolarizing current.

(D) Effect of membrane hyperpolarization in

maintained presence of Ih but with a 60% in-

crease in excitatory synaptic conductance to

trigger a dendritic Ca2+ spike. Black and red

traces in the absence and presence of �0.011

nA current. Error bars represent standard error.
This effect produced an 84% increase in availability of

T-type channels and a 14% increase in availability of

N-type channels prior to the spike.

Since loss of Ih both hyperpolarizes the resting mem-

brane and increases the input resistance, we used the

model to dissect the relative importance of these two ef-

fects. We first asked whether hyperpolarization is neces-

sary for the enhancement in the Ca2+ signal. Following

removal of Ih, the membrane was depolarized back to its

original potential by adjusting the K+ reversal potential

(EK) to a more positive value (EK =�72.9 mV). Under these

conditions where Ih was absent but resting potential was

unchanged, the model generated a nearly normal-sized

Ca2+ influx and Ca2+ signal even though there was still

a significant increase in input resistance due to the lack

of Ih (Figure 7B). Thus, membrane hyperpolarization is

necessary for the enhancement.

We then tested whether hyperpolarization alone is suffi-

cient to enhance the distal Ca2+ spike. A normal-sized Ih
was maintained in the simulation while the membrane
1084 Neuron 56, 1076–1089, December 20, 2007 ª2007 Elsevi
was hyperpolarized to a negative potential equal to that

normally reached upon Ih removal. Although steady-state

availability of T- and N-type channels was increased to

a similar extent as seen upon removal of Ih, the burst of

EPSPs failed to trigger a Ca2+ spike because the peak

EPSP voltage was now subthreshold (Figure 7C). This is

in contrast to our experimental results where loss of Ih
had little effect on the threshold for eliciting a dendritic spike

(Figure 2). To counteract the inhibitory effect of the hyper-

polarization, we increased the size of the synaptic conduc-

tance to reach a peak voltage similar to that seen when

EPSPs are elicited from the normal resting potential. Under

these conditions, the model dendrite generated a Ca2+ sig-

nal with a significantly enhanced amplitude and duration,

similar to that observed in the absence of Ih (Figure 7D).

Thus, spike prolongation does not require the increase in

input resistance associated with the removal of Ih, as long

as the EPSP is large enough to reach threshold.

These simulation results indicate that the effect of Ih
removal to enhance the Ca2+ spikes depends on two
er Inc.
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Figure 8. Coapplication of ZD7288 with Elevated KCl Prevents the Hyperpolarization Induced by Ih Blockade and Inhibits Ca2+

Spike Enhancement

(A) Somatic voltage responses to hyperpolarizing current injections in normal KCl (black traces, Control, 2.5 mM KCI) and after application of 10 mM

ZD7288 plus 6.25 mM KCl (red traces). The circles on the left show mean (±SE) values of resting potential: Control (black), Vm = �68.2 ± 0.4 mV

(n = 22); ZD7288 + 6.25 mM KCl (red), Vm = �63.6 ± 0.4 mV (n = 8); ZD7288 only (blue), Vm = �75.5 ± 0.45 mV (n = 7).

(B) Mean effect of ZD7288 plus 6.25 mM KCl on depolarizing sag (left) and input resistance (right). Input resistance (Rin): Control, 105.4 ± 13.2 MU ;

ZD7288 plus 6.25 mM KCl, 156.1 ± 9.1 MU. Sag ratio (steady-state/peak voltage response to hyperpolarizing current): Control, 0.84 ± 0.03; ZD7288

plus KCl, 1.00 ± 0.008 (p < 0.01, paired t test; n = 7).

(C) Example somatic voltage (top) and distal Ca2+ signals (bottom) in response to ZD7288 plus 6.25 mM KCl. Black traces, control (2.5 mM KCI without

ZD7288). Red traces, in the presence of 10 mM ZD7288 plus 6.25 mM KCl. Application of ZD7288 plus elevated KCl did not alter or slightly decreased

peak Ca2+ in 6 of 8 cells (examples i and ii). In 2 of 8 cells, ZD7288 plus elevated KCl increased the Ca2+ signal (iii). Increase in KCl enhanced excitability

in all 8 cells, leading to prolonged firing in response to PP stimulation.

(D) Pooled data for effects of ZD7288 plus 6.25 mM KCl on mean distal Ca2+ signal amplitude (DS/S0) and duration (HW). Control: DS/S0 = 66.4% ±

5.8%, HW = 344.6 ± 66.3 ms; ZD7288 + KCl: DS/S0 = 74.2% ± 8.1% (p = 0.34, n = 7), HW = 409.7 ± 75.3 ms (p = 0.27, n = 7).
synergistic actions. First, the hyperpolarization of the rest-

ing membrane removes resting inactivation of T- and

N-type VGCCs, which enhances subsequent Ca2+ influx

during a spike. Second, the increase in input resistance

increases temporal integration and allows an EPSP to

reach threshold to trigger a Ca2+ spike despite the hyper-

polarization.

Counteracting the Hyperpolarization Induced
by Ih Blockade Occludes the effects
on Calcium Enhancement
To provide an experimental test of the importance of

membrane hyperpolarization for the enhancement in the

Ca2+ spike, we counterbalanced the normal hyperpolar-

ization upon blockade of Ih with ZD7288 by elevating

external K+, similar to the simulation results with an altered

EK. Distal Ca2+ signals were measured before and after

bath application of ZD7288 (10 mM) in elevated

(6.25 mM) KCl. This concentration of KCl was calculated

to be appropriate for maintaining the distal dendritic rest-

ing potential at its normal level upon blockade of Ih (see

Supplemental Data).
Neuron
Application of ZD7288 in elevated KCl was still effective

at blocking HCN channels, as evident by the block of the

hyperpolarization-induced voltage sag normally caused

by Ih activation (Figure 8A). Importantly, the addition of

KCl to the ZD7288 solution was also effective in prevent-

ing the hyperpolarization of the somatic resting potential.

Whereas application of ZD7288 alone hyperpolarized the

membrane from its normal value of �68.1 ± 1.3 mV

to �75.5 ± 0.45 mV, coapplication of ZD7288 plus

6.25 mM KCl resulted in a slight depolarization of the rest-

ing membrane to �63.6 ± 0.4 mV. Although the somatic

membrane potential is 4–5 mV more positive than its orig-

inal resting potential in 2.5 mM KCl in the absence of

ZD7288, the KCl concentration of 6.25 mM is what we

calculated as being necessary to maintain the resting

potential of the distal dendritic membrane at its normal

level upon blockade of Ih, due to its high density of Ih
(see Supplemental Data).

When we delivered a burst of distal PP stimulation in the

presence of ZD7288 plus 6.25 mM KCl, the normal effect

of Ih blockade to prolong the distal Ca2+ spikes was largely

eliminated (Figures 8C and 8D). In 6 out of 8 cells exam-

ined, application of ZD7288 plus KCl either had no effect
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on Ca2+ spike duration and amplitude or caused a small

decrease (Figure 8C). However, in 2 of the 8 cells, there

was still a substantial increase in Ca2+ signal peak ampli-

tude and duration, similar to what we observed when

ZD7288 was applied alone. This may reflect variability in

the distal dendritic resting potential (Kole et al., 2006).

Alternatively, it may reflect a small hyperpolarization-

independent component of the effect of ZD7288 plus

6.25 mM KCl, due to the increase in input resistance and

decrease in K+ driving force, as observed in the computa-

tional model (Figure 7B). On average over all eight exper-

iments, application of ZD7288 plus 6.25 mM KCl pro-

duced an �12% increase in the peak Ca2+ signal

(Control: DS/S0 = 66.4% ± 5.8%; ZD7288 plus KCl:

DS/S0 = 74.2% ± 8.1%, p = 0.34) accompanied by an

�19% increase in half-width (Control: 344.6 ± 66.3 ms;

ZD7288 plus KCl: 409.7 ± 75.3 ms, p = 0.27) (Figure 8D).

These effects were significantly smaller than the 17%

(p < 0.01) increase in peak and 57% (p < 0.01) increase

in duration of the Ca2+ signals when ZD7288 was applied

alone (see Figure 3). Thus, in agreement with the model,

our experimental results are consistent with the view

that membrane hyperpolarization makes an important

contribution to the enhancement in the distal dendritic

Ca2+ signal upon blockade of Ih.

DISCUSSION

This study describes a mechanism by which HCN chan-

nels constrain nonlinear Ca2+ events at distal dendrites

of CA1 pyramidal neurons, providing an explanation for

the widespread finding that blockade of the excitatory Ih
enhances dendritic excitability. We find that the unique ef-

fects of Ih to decrease input resistance while depolarizing

the resting membrane exert a powerful inhibitory influence

on Ca2+ spikes generated in distal dendrites. As a result,

reduction of Ih, either due to HCN1 deletion or pharmaco-

logical blockade, leads to an increase in the peak ampli-

tude and a dramatic prolongation in duration of the distal

Ca2+ signals elicited by a short burst of perforant path

synaptic stimulation.

According to our pharmacological results, the distal

Ca2+ events are triggered by synaptic activation of both

AMPA and NMDA receptors, which generates an initial

depolarization that then activates both Ni2+-insensitive

T-type and N-type voltage-gated Ca2+ channels. Immuno-

cytochemical studies show that the Ni2+-insensitive

CaV3.3 subunit is the major T-type isoform expressed in

the distal CA1 neuron dendrites (McKay et al., 2006), sug-

gesting that this isoform participates in the distal Ca2+

spikes. Interestingly CaV3.3 channels display significantly

slower inactivation kinetics than the other T-type channel

isoforms (CaV3.1 and CaV3.2), with time constants of inac-

tivation >50 ms, appropriate for generating long-lasting

Ca2+ spikes (Lee et al., 1999). The N-type channels display

even slower inactivation kinetics, with time constants >

100 ms (Fox et al., 1987; Nowycky et al., 1985). These

two VGCCs also show relatively slow activation kinetics
1086 Neuron 56, 1076–1089, December 20, 2007 ª2007 Elsevi
and require relatively strong depolarizations to activate,

with midpoint activation voltages of �21 mV for CaV3.3

(Lee et al., 1999) and +10 mV for N-type channels (Fox

et al., 1987; Nowycky et al., 1985). Thus, the triggering

of regenerative events mediated by such channels will

require large, long depolarizations, such as those elicited

by bursts of synaptic stimulation. Finally, the steady-state

inactivation of both CaV3.3 and N-type VGCCs shows

a steep dependence on voltage near typical resting mem-

brane potentials. As a result, steady-state availability of

these channels will be responsive to small changes in rest-

ing potential.

Our computational and experimental findings indicate

that the voltage-dependent properties of Ih are finely

tuned to interact with the voltage-dependent gating of

the T- and N-type Ca2+ channels to regulate the distal

Ca2+ spikes. The effect of Ih to depolarize the resting mem-

brane increases the steady-state inactivation of these

VGCCs, whereas the effect of Ih to decrease the input re-

sistance reduces the size of the EPSP, thus decreasing

the voltage-dependent activation of the calcium channels.

These combined effects of Ih therefore exert a powerful

inhibitory effect on T- and N-type channel opening, thus

inhibiting Ca2+ influx during the distal dendritic Ca2+

spikes. As dendrites contain an array of voltage-gated

channels in addition to Ih, other ionic mechanisms are

also likely to regulate the distal Ca2+ spikes (e.g., Wei

et al., 2001; Cai et al., 2004).

One surprising result from our study is that neither Ni2+-

sensitive VGCCs (including CaV3.2 T-type and CaV2.3

R-type) nor dihydropyridine-sensitive L-type VGCCs ap-

pear to contribute to the distal Ca2+ spikes. These results

were unexpected, as previous studies have found that

either the combined application of Ni2+ and nimodipine

(Golding et al., 2002) or the application of a high concen-

tration of nifedipine (a dihydropyridine similar to nimodi-

pine) alone partially inhibits perforant path LTP (Re-

mondes and Schuman, 2003). Recently, Ni2+-sensitive

and L-type VGCCs channels have been found to contrib-

ute to Ca2+ influx into CA1 neuron dendritic spines in stra-

tum radiatum in response to local uncaging of glutamate

(Bloodgood and Sabatini, 2007). Thus, the Ni2+-sensitive

or L-type channels may participate in perforant path LTP

by directly contributing to Ca2+ influx in spines on distal

dendrites.

The inhibitory role of Ih in regulating the long-lasting

Ca2+ spikes in CA1 dendrites in stratum lacunosum mo-

leculare is in general agreement with previous findings

that Ih inhibits other forms of dendritic excitability, such

as the firing of briefer spikes in proximal CA1 dendrites

in stratum radiatum (Fan et al., 2005; Magee, 1998; Poolos

et al., 2002), distal dendrites in neocortical layer V neurons

(Williams and Stuart, 2000; Berger et al., 2003; Kole et al.,

2007), and dendrites of entorhinal cortex layer V neurons

(Rosenkranz and Johnston, 2006; Shah et al., 2004). The

surprisingly long duration of the Ca2+ spikes in the SLM

dendrites that we observe is in agreement with the

Ca2+ waveforms seen in distal CA1 dendrites of rat
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hippocampal slice cultures (Wei et al., 2001; Cai et al.,

2004). However, briefer Ca2+ spikes from distal dendrites

of rat CA1 neurons have also been reported (Golding et al.,

2002), suggesting that there may be different modes of re-

generative activity induced by slightly different stimulus

protocols. The long-lasting Ca2+ spikes in SLM dendrites

may depend on the unique distribution of voltage-gated

channels in these membranes. For example, the Kv4.2

A-type K+ channel, which exerts a powerful inhibitory ef-

fect on excitability, is restricted to the SR region of CA1

dendrites (Rhodes et al., 2004), where it prevents the inva-

sion of the SR dendrites by distal Ca2+ spikes generated in

SLM (Cai et al., 2004). Despite these differences in local

ion channels, the genesis of dendritic action potentials in

many neuronal cell types is often mediated by voltage-

dependent Ca2+ channels; thus, the inhibitory mechanism

that we have identified in CA1 SLM dendrites is likely to

extend to other areas of the nervous system with high den-

sities of Ih.

Recent studies have correlated the modulatory role of Ih
in dendritic integration to performance in memory tasks,

both for hippocampal-dependent spatial memory in

mice (Nolan et al., 2004) and working memory mediated

by the prefrontal cortex (Wang et al., 2007). Here we pur-

posefully used stimulation protocols similar to those used

to induce LTP at PP synapses (Golding et al., 2002; Nolan

et al., 2004) to examine effects of Ih on Ca2+ transients that

may be relevant to hippocampal memory. These distal

Ca2+ spikes are thought to play an important role in the

induction of LTP at the PP synapses, since somatic action

potentials fail to backpropagate into the distal CA1 den-

drites (Golding et al., 2002; Remondes and Schuman,

2003). Importantly, the peak Ca2+ level associated with

the distal spikes can exceed 10 mM, a concentration capa-

ble of inducing LTP (Malenka et al., 1988; Yang et al.,

1999). Thus, the augmentation in distal Ca2+ transients

observed upon HCN1 deletion provides a potential mech-

anism for the enhancement in LTP at the PP synapses in

the HCN1 KO mice. As both our study and a previous

study of the role of HCN1 in LTP (Nolan et al., 2004)

were performed in the presence of blockers of inhibitory

synaptic transmission, it will be of interest in the future to

explore the role of HCN1 when inhibition is intact.

Although the regulation of dendritic Ca2+ spikes that we

have analyzed is due to genetic or pharmacological ma-

nipulations of Ih, HCN channels are regulated by a number

of modulatory processes that are of physiological rele-

vance. Thus, Ih is directly facilitated by the second mes-

senger cAMP (DiFrancesco and Tortora, 1991) and the

membrane lipid PI(4,5)P2 (Pian et al., 2006; Zolles et al.,

2006). Enhancement of cAMP levels by dopamine de-

presses dendritic excitability in entorhinal cortex neurons

through a mechanism that depends on an enhancement in

Ih (Rosenkranz and Johnston, 2006). Moreover, both

physiological (Fan et al., 2005) and pathophysiological

(Shah et al., 2004) levels of intrinsic neural activity have

been found to alter levels of Ih and HCN1 expression

that are associated with long-lasting changes in dendritic
Neuro
integration and excitability. Conversely, a reduction in Ih,

for example due to a reduction in resting levels of cAMP,

may augment the distal Ca2+ events, potentially leading

to an enhancement of LTP, as seen in the HCN1 KO

mice. Thus, we suggest that the effect of Ih to constrain

dendritic Ca2+ spikes may represent a physiologically

important means for dynamically regulating dendritic inte-

gration and synaptic plasticity in a wide variety of pyrami-

dal neurons in the central nervous system.

EXPERIMENTAL PROCEDURES

Tissue Preparation

Horizontal brain slices were prepared from P30–P50 HCN1 KO mice

(�/�) or wild-type (+/+) littermates (Nolan et al., 2003). Mice were

deeply anesthetized with isoflurane and their brains rapidly removed

and placed in cold (2�C–3�C) modified ACSF containing (in mM)

NaCl (10), NaH2PO4 (1.25), KCl (2.5), NaHCO3 (25), glucose (25),

CaCl2 (0.5), MgCl2 (7), sucrose (190), and Na-pyruvate (2), equilibrated

with 95%/5% O2/CO2. The hemisected brain was glued to an agar

block (angled 10� in the ventromedial direction for optimal preservation

of SLM perforant path inputs) and cut submerged in cold ACSF into

300 mm sections with a Vibratome 1000. Slices were transferred to

standard ACSF at 35�C for 30–60 min and then kept at room temper-

ature (21�C–22�C). Experiments were performed 1.5–7 hr after slice

preparation.

Electrophysiology Recordings and Solutions

The standard ACSF had the following composition (mM): NaCl (125),

NaH2PO4 (1.25), KCl (2.5), NaHCO3 (25), glucose (25), CaCl2 (2), and

MgCl2 (1). In all experiments, inhibitory transmission was blocked by

the GABAA and GABAB receptor antagonists gabazine (1 mM) and

CGP-55845 (2 mM), respectively. Whole-cell recordings were obtained

from CA1 pyramidal cells in submerged slices at 33�C–35�C. Neurons

were visually identified using DIC optics and contrast enhancement

with a digital camera (Hamamatsu). Patch pipettes (2.5–5 MU) were

filled with intracellular solution containing (mM) KMeSO4 (130), KCl

(10), HEPES (10), NaCl (4), MgATP (4), Na2GTP (0.3), phosphocreatine

(10), and calcium-insensitive (Alexa Fluor 594, 25 mM) and calcium-sen-

sitive (Oregon Green BAPTA-5N, 500 mM) dyes. Series resistance was

less than 20 MU in somatic and less than 50 mU indendritic recordings;

capacitance was fully compensated throughout the experiment.

Fluorescent indicators (Alexa 594 cadaverine, Fluo-4 cadaverine,

Oregon-Green BAPTA-5N) were purchased from Molecular Probes

(Invitrogen, Carlsbad, CA), diluted into 1003 stock solutions using

standard intracellular solution, aliquoted, and frozen (�20�C). Pharma-

cological antagonists were added to the bath solution by dilution from

stock solutions (500- to 1000-fold concentrated). All drugs were

obtained from either Sigma or Tocris-Cookson and used at the follow-

ing concentrations (mM): CPA (30), D-APV (50), gabazine (1), CGP-

55845 (2), CNQX (10), u-conotoxin GVIA (1), mibefradil (20), and nimo-

dipine (20).

Two-Photon Ca2+ Imaging

Two-photon imaging was performed using a BioRad Radiance

2100 MP (Zeiss, Jena, Germany), powered by a MaiTai Ti:sapphire

pulsed laser (Spectra-Physics, Fremont, CA) tuned to 800 nm. Red

(Alexa 594 cadaverine; Ca2+ insensitive) and green (Oregon Green

BAPTA-5N or Fluo-4 cadaverine; Ca2+ sensitive) epifluorescent signals

were collected through a 603 1.1 NA objective (Olympus, Center Val-

ley, PA) and measured by custom external GaAsP detectors (Multipho-

ton Peripherals Inc., Ithaca, NY). Optical signals were digitized through

the Radiance system using Lasersharp 2000 software (Zeiss) and an-

alyzed offline in Igor Pro (Wavemetrics, Lake Oswego, OR). The Ca2+

signal (S) was defined as the ratio of the calcium-dependent green
n 56, 1076–1089, December 20, 2007 ª2007 Elsevier Inc. 1087
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fluorescence versus the calcium-independent red fluorescence (G/R),

using low-pass filtered averages of three to five individual linescans,

normalized to the prestimulus baseline (see Supplemental Methods

for details).

Electrophysiological Data Acquisition and Analysis

Recordings were obtained using a two-channel Multiclamp 700B am-

plifier (Molecular Devices, Sunnyvale, CA). Data were digitized on

a Windows PC using an ITC-18 A/D board (Instrutech Instruments,

Port Washington, NY) controlled by either PULSE acquisition software

(Heka Instruments) or custom routines written in Igor Pro (Wavemet-

rics, Eugene, OR). All current-clamp data were acquired at 20 kHz

and low-pass filtered at 4 kHz using the Multiclamp 700B Bessel filter.

Analysis was performed using custom routines written in Igor Pro.

Statistical tests were performed using Excel (Microsoft, Redmond,

WA) and SigmaStat (Systat Software, Inc., San Jose, CA).

Computational Modeling

Nonlinear, synaptically evoked regenerative events at distal dendrites

were simulated in NEURON (Carnevale and Hines, 2006; available at

http://www.neuron.yale.edu/neuron) using a single-compartment

model (dendrite of 25 mm length and 1 mm diameter) with the following

active channel conductances (in pS/mm2): gNa (45), gK,DR (4), gK,A (640),

gH (20), gLEAK (10), gCa,T (60), and gCa,N (30). A specific capacitance of

2 mF/cm2 was used to account for spine surface area. The Ih conduc-

tance value was chosen to yield a membrane potential shift of �6 mV

upon removal of 80% of the conductance, matching our experimental

observations. Synaptic current (ten synapses, 350 pS conductance

each) was simulated using custom models of AMPA and NMDA recep-

tor kinetics (Supplemental Data).

The predicted fluorescence signal was simulated by implementing

a model of Ca2+ binding and extrusion assuming first-order enzyme

kinetics in Matlab 7 (Mathworks, Natick, MA). The model included

(concentrations in mM) calbindin (40), extrusion via membrane pumps

(240), a very low-affinity endogenous buffer (10,000), and OGB-5N

(500). The model was constrained by varying densities of buffers and

transporters to yield a Ca2+ fluorescence signal whose amplitude

and time course matched our experimental observations. Further

details of simulations with references are given in Supplemental Data.

Supplemental Data

The Supplemental Data for this article can be found online at http://

www.neuron.org/cgi/content/full/56/6/1076/DC1/.
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