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Animals learn both whether and when a reward will occur. Neural
models of timing posit that animals learn the mean time until
reward perturbed by a fixed relative uncertainty. Nonetheless,
animals can learn to perform actions for reward even in highly
variable natural environments. Optimal inference in the presence
of variable information requires probabilistic models, yet it is
unclear whether animals can infer such models for reward timing.
Here, we develop a behavioral paradigm in which optimal per-
formance required knowledge of the distribution from which
reward delays were chosen. We found that mice were able to
accurately adjust their behavior to the SD of the reward delay
distribution. Importantly, mice were able to flexibly adjust the
amount of prior information used for inference according to the
moment-by-moment demands of the task. The ability to infer
probabilistic models for timing may allow mice to adapt to complex
and dynamic natural environments.
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Animals learn the delay until a reward will be delivered fol-
lowing either an animal’s own action or the presentation of

a conditioned stimulus (1). The ability of animals to correctly
infer reward delays is thought to be critical for a range of
adaptive behaviors (2, 3) from operant and classical conditioning
(4) to optimal foraging (5). Rodents asked to reproduce a par-
ticular time interval do so with a variance that scales in pro-
portion to the mean (4, 6). Based largely upon this observation,
neural models of timing propose that rodents learn the time
interval between an action and its outcome as a mean interval
perturbed by a constant coefficient of variation (∼0.15) (4, 7–10).
The constant variability with which the mean time is known
(“scalar timing”) is conceived of as the uncertainty with which
a rodent knows the expected reward delay interval (11, 12). In
the case of a constant reward delay such models will suffice to
estimate an expected reward delay for a future action.
By contrast to the reliable timing of most operant condition-

ing paradigms, in a natural environment the timing with which
events occur can be arbitrarily large (exceeding the variance of
scalar timing) and dynamic. Consider, for example, the timing of
responses from conspecifics in a social setting. Or consider a
foraging animal that must decide how long to persist searching
a patch for food (13). In the presence of variable information,
optimal decisions require an agent to infer probability distri-
butions that incorporate uncertainty learned through repeated
experience (14, 15). Financial decision theory posits that knowl-
edge of both the mean and variance of expected returns is
necessary to select a portfolio optimally. Consistent with these
predictions recent studies have shown that human subjects are
capable of tracking uncertainty (16, 17). Moreover, neural cor-
relates of uncertainty about future rewards have been observed
in midbrain dopamine neurons of nonhuman primates (18) and
in dopamine-recipient brain regions in human subjects (17).
Although financial decision theory has largely considered un-
certainty in the magnitude of returns after a fixed period, an
agent may also be subject to uncertainty about the time until
a positive return is realized as we described above. Optimal
decisions about the amount of time one should persist in waiting
for a positive return likewise require information about the av-
erage delay and the uncertainty (19).
Thus, action in the presence of uncertainty requires proba-

bilistic information and optimal performance often requires

knowledge of detailed probability distributions or their param-
eters. This raises the question of whether agents can infer the
necessary probabilistic models. Several lines of evidence suggest
that primates can infer probabilistic information about reward
timing and that these inferred distributions are used to guide
behavior. Human subjects asked to reproduce precise time
intervals showed sensitivity to the distribution from which in-
dividual intervals were selected (20, 21). Human subjects given
the option to wait for delayed rewards adjust their behavior
optimally as a function of the probability distribution from which
reward delays were drawn (19). Moreover, nonhuman primates
allocate attention according to an arbitrary variability in timing
(22, 23). Rodents can learn several discrete reward delays (1, 7,
24); however, it has been less clear whether rodents can adapt
optimally to changes in uncertainty. A recent behavioral study
demonstrated that mice can learn to switch between two ex-
pected reward delays rapidly (25), consistent with an inferred,
probabilistic model of the task structure. Nonetheless, it remains
unclear whether mice can infer probabilistic models of reward
timing. Moreover, the dynamics by which a probabilistic model is
constructed from recent experience remains poorly understood.
Here, we develop a switching interval variance (SIV) operant

conditioning task for mice. Optimal performance of the SIV task
required mice to adapt their behavior to the mean and the SD of
reward delays. We find that mice adjust their behavior to the SD
of reward delays across an order of magnitude change in vari-
ability. Quantitative analysis of the behavior was consistent with
a process of statistical inference but not with switches among a
small number of well-learned strategies. Our data were well fit
by a model in which mice inferred a probabilistic model of re-
ward delays from many tens of previous trials. Thus, our data
suggest that the ability to infer probabilistic models for timing
is not the privilege of primates, but rather arose much earlier
in evolution.

Significance

To make optimal decisions in the presence of uncertainty
requires the inference of probabilistic models. For example,
financial decision theory posits that selection of optimal port-
folios requires information about both the mean and variance
of expected returns. In the timing literature it is often sug-
gested that rodents learn the delay until reward delivery with
a fixed relative uncertainty. However, in a natural environment
the timing of events may have an arbitrary uncertainty. Thus,
we asked whether mice could infer probabilistic models of
timing in highly dynamic environments. Here we have de-
veloped a behavioral paradigm to show that mice can accu-
mulate reward timing information over many tens of trials to
infer accurate probabilistic models and make optimal decisions.
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Results
Behavioral Task. The SIV operant conditioning task is schemati-
cally illustrated in Fig. 1. Mice (n = 9) were placed in a behav-
ioral chamber with two thin metal levers protruding from the
walls of the box and a recessed central port (“reward port”) at
which water could be delivered (Fig. 1A). For any given trial only
one lever (the “baited” lever) would lead to the delivery of
a delayed water reward on ∼85% of trials (Fig. 1B) and the side
of the baited lever was switched in a blockwise fashion (180–200
trials/block) to ensure goal-directed and thus potentially optimal
behavior (26). This design produced three distinct trial types:
a correct choice of the baited lever followed by water delivery
(“rewarded”), a correct choice of baited lever with no water
delivered (“probe”), and an incorrect choice of the unbaited lever
(“error”). In all cases, completion of a trial required approaching
the reward port, and in the case of rewarded trials, the water reward
had to be collected. The time delay between lever press and de-
livery of the water reward was randomly drawn from a Gaussian
probability density function (pdf). The SD of the reward delay
pdf (σdelay) in each block was selected from a set of three possible
values: 50, 750, and 2,000 ms. All blocks had a mean reward delay
(μdelay) of 3 s.
Probe trials were not cued, and thus for a given block, we

assume that mice choose a strategy that was consistent across
rewarded and probe trials. An approximately uniform spacing of

probe trials allowed us to estimate the dynamics of the reward
delay expectation both within and between blocks. We used
the amount of time that the mouse waited at the reward port
(twaiting) as a measure of the expected reward delay (Fig. 1C).
In rewarded trials, animals’ waiting time was determined by the
reward delay distribution (Fig. 1C, gray dots). However, in probe
and error trials, animals have to decide when to leave the water
port independent of any timing cues and based only upon their
expectation of reward timing. So the waiting time in probe and
error trials reflects animals’ estimate of the parameters of the
reward delay distribution. Even a qualitative description of
“optimal” performance of the SIV task makes a number of
verifiable predictions. If mice are to maximize the rate at which
reward is collected, then (i) they must adapt their waiting time to
the variability of the reward delay distribution such that the port
is not abandoned until the mice are confident that the current
trial is a probe trial and no reward will be delivered; (ii) for
symmetric distributions like those used here, mice should at-
tempt to arrive at the reward port more rapidly as the variability
of reward delays increases to collect early rewards as quickly as
possible; and (iii) on trials in which mice cannot have knowledge
of the specific parameters of the reward delay distribution, they
should adapt their waiting time to the feature common to all
blocks—namely, the mean reward delay. Quantitative analysis of
the SIV task can be used to refine the first prediction. Under the
constraints of the SIV task, mice should adapt their waiting times
to be linearly proportional to the SD of the reward delay dis-
tribution (see SI Materials and Methods for details).

Performance of Mice in the SIV Task Indicating They Infer the Reward
Delay Distribution. We sought to test these three behavioral pre-
dictions by examining the behavior of mice trained to perform
the SIV task. We first asked whether mice could adapt their
waiting time in proportion to the σdelay of the current block of
trials. As predicted we found that Δtwaiting (twaiting in each block
relative to the twaiting in σdelay = 50 block) was proportional to
σdelay of the distribution from which reward delays were drawn.
Across mice Δtwaiting was a linear function of σdelay and well fit by
a line with a slope of 1.04 (P < 0.001; Fig. 2A).
Mice could not discern rewarded trials with a particularly long

delay from probe trials before the average waiting time had
elapsed. Given the choice of waiting time as proportional to
σdelay, we thus predicted that mice would leave early on a subset
of rewarded trials. To confirm the validity of this assumption, we
asked whether the waiting times measured in probe trials could
predict the probability with which mice abandoned the port on
rewarded trials with long delays. We used the mean and SD of
Δtwaiting in the σdelay = 2,000 ms blocks to predict the fraction of
rewarded trials in which the mouse would leave before reward
delivery [Pleave(Δtwaiting)]. We found that the Pleave(Δtwaiting)
calculated using probe trial waiting times could account for the
observed probability with which mice abandoned the reward port
before reward delivery (ρ = 0.98; P < 0.001, Pearson correlation)
(Fig. 2B).
Given the symmetric distributions used in higher σdelay blocks,

there will be equal trials in which reward arrives with a short
delay as a long delay. If mice indeed know the distribution from
which delays are drawn, then they should also approach the re-
ward vestibule faster in the high σdelay blocks. To test this pos-
sibility we calculated the interval from lever press to reward
vestibule entry (“approach time,” tapproach). We found that the
average approach time decreased with increasing σdelay (tapproach
in σdelay = 2,000 ms blocks is significantly shorter than it is in 50
and 750 blocks; P < 0.001, ranksum test; Fig. 2C), nearing the
minimal delay achievable (∼500 ms; Materials and Methods).
An alternative explanation for the correlation between Δtwaiting

and σdelay is that the large variation in reward delays used was
disrupting performance. Due to the presence of two levers in
our task, we could test this possibility by calculating the error
rates across different blocks. We found that the error rates are
very low across different blocks (0.085 ± 0.0109) and slightly
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Fig. 1. Design and performance of the SIV task. (A) Schematic representation
of select moments (red numbers 1–3) from the video of a single trial of the SIV
task. (B) Timeline of three example trials taken from an example block in the
SIV task. Blue sun indicates illumination of the cue light upon a successful
lever press. Trial types are defined at left and referred to in the text. Probe
trials were spaced by 6–10 trials (uniform random distribution, ∼15% of all
trials in a block). Black Gaussian distributions represent the σdelay for the block,
and the cyan circle represents the delay chosen for the current trial. The
presence or absence of water reward is indicated by a blue water drop or red
cross, respectively. The duration of reward consumption and waiting periods
are indicated by yellow and gray shaded areas, respectively. Exit from the
vestibule was used as an indication of the attempt to initiate a new trial. Red
numbers indicate the corresponding moments between the timeline (B) and
performance schematic (A). Interval metrics used in the text and subsequent
figures are schematically shown as intervals corresponding to the “approach,”
“reward,” and “waiting” times for each trial. (C) Example data from four
blocks of a single daily session in which a trained mouse performed the SIV
task. For each block of trials the reward delay interval distribution is indicated
in the upper row. Individual waiting times (twaiting) on rewarded (black), probe
(red), and error (cyan) trials are plotted as a function of trial.
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decreased as a function of σdelay (error rates in σdelay = 2,000 ms
blocks is significantly smaller than it is in 50 and 750 blocks; P <
0.05, ranksum test), suggesting that mice, if anything, were less
confused during blocks with more variable reward delays. We
also found no significant difference between error rates in blocks
in which the left (0.0945 ± 0.0103) or right (0.0763 ± 0.0117)
lever was baited. Thus, the high level of performance and
adoption of both a waiting time and approach strategy correlated
with σdelay suggested that mice build a model of the expected
reward delay distributions.

Waiting Times Are Proportional to the Mean During Exploration. We
next asked whether mice could adjust behavior to the mean re-
ward delay in the absence of specific knowledge of the reward
delay distribution. In tasks with multiple operant responses, for
example the two levers in our task, animals are thought to switch
between a state of exploitation in which an action with a known
outcome is pursued to obtain reward and a state of exploration in
which an alternative option with unknown outcomes is evaluated
for potential reward (27). Even after substantial training in the
SIV task, mice still chose the unbaited lever in some trials during
a block (Fig. 1C), suggesting a tendency to explore the alterna-
tive action. Consistent with a shift to exploratory behavior, we
found that error trials occurred in short bursts of trials (Fig. 3A,
Inset). The marginal value theorem from foraging theory predicts
that during exploration one should only evaluate whether the
unknown option is better than the best available option. In the
context of the SIV task, the intertrial interval (ITI) is minimal
when the reward delays are equal to the μdelay (i.e., σdelay ∼ 0).
Thus, during exploration mice would need to determine whether
the reward delay distribution on the alternate lever is less than
that of the σdelay = 50 ms block. Consistent with this prediction,
we found that during exploration trials mice waited for a time
equal to the σdelay = 50 ms block (Δtwaiting ∼ 0), but independent
of the σdelay of the currently baited lever (Fig. 3A). A similar
logic applies to the choice of waiting time after an uncued block
change—that is, as confidence that the current lever is baited
erodes. We found that in interblock error trials mice likewise
adopted a Δtwaiting that rapidly relaxed to Δtwaiting ≅ 0 in-
dependent of the σdelay of the previous block (Fig. 3B). Thus,
waiting times in both exploratory trials and interblock error trials
suggest that mice can adjust their waiting time to μdelay. Impor-
tantly, this occurs independent of the waiting time on neigh-
boring, rewarded trials.

The Dynamics of the Waiting Behavior Are Consistent with Inference
of a Probabilistic Model. If it were the case that mice were using
past trials to infer the distribution from which reward delays were
being drawn, several predictions would follow. First, if mice
adapt their behavior to a property of the inferred distribution we
would predict that both the reward delay in the previous trial
(Fig. S1A, Left) and/or mean reward delay for the 10 previous
trials (Fig. S1A, Right) would only weakly correlate with the
waiting time on a given probe trial. Indeed, we found that the
correlations were weak for all blocks (R < 0.1). Finally, when we
extracted the linear kernel (28–30) that related the waiting time
in a probe trial to the reward times of the most recent trials, we
found no significant structure (Fig. S1B; see SI Materials and
Methods for details). The form of the linear kernel was consistent
with an approximately uniform accumulation of timing infor-
mation over at least 10 trials.
Second, we would predict that the transition from a low σdelay

block to a high σdelay block should occur faster than the converse.
This follows from a simple statistical argument: a high σdelay
block contains experienced intervals that could not be observed
given a low σdelay (Fig. 4A); however, any individual observation
in the low σdelay block is also consistent with a high σdelay (Fig.
4A). To test this possibility we aligned probe trials on the block
switches between the highest → lowest (H > L) and lowest →
highest (L > H) σdelay blocks. We found that Δtwaiting on H > L
transitions were adjusted more slowly (a lag of two probe trials
corresponded to ∼15 rewarded trials; Fig. 4B) than L > H
transitions. We found no significant difference in the number of
error trials between transitions (Fig. 4B, Inset), and thus the slow
transition at the H > L block switch could not be explained as
a mere performance deficit.
A gradual change in the average Δtwaiting on H > L transitions

is consistent with two, very different, transitions on individual
block switches (Fig. S2A). A smooth average transition could
reflect the average of multiple step-like transitions with varying
delays, or could reflect the average of smooth transitions around
each individual block switch. Previous work from Kheifets and
Gallistel (2012) (25) argued that mice represent probabilities
and perform a step-like change in behavioral strategy following
the detection of a change in reward timing. However, if mice
were performing inference from a history of reward delays, we
would expect a gradual transition as new timing information was
incorporated following the block switch. Consistent with the
latter model, we observed clear gradual transitions around many
block switches (an example is shown in Fig. S2B). To examine
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Fig. 2. Mice adjust their behavior to the SD of the action–outcome interval.
(A) The average Δtwaiting on probe trials from nine individual mice as
a function of σdelay of the distribution from which the reward delay was
drawn. A unity line is shown. (B) Δtwaiting tuned to the σdelay predicts missed
rewards on rewarded trials. For each mouse the distribution of twaiting on
probe trials was used to predict the probability of leaving the port before
reward delivery minus the probability that the leaving time (tleave) is less
than reward delivery time (treward). P(tleave < treward) is plotted as a function
of the actual delay on rewarded trials (gray shaded area indicates the pre-
diction ± 1 SD from the probe trial waiting times). The observed probability
binned and averaged for all mice is shown in black lines and symbols. (C) The
time to approach (tapproach) the water port is plotted as a function of σdelay.
Error bars reflect the SEM of all mice.
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2–5 trials following the block switch (colors as indicated in the legend).
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transitions across the entire dataset, we calculated the derivative
of Δtwaiting in probe trials immediately before and after a block
switch. To facilitate comparison of the time course of transitions
around block switches, we normalized the range of Δtwaiting to
the minimum and maximum mean waiting times for each mouse
(absolute waiting times were idiosyncratic). If transitions were
step-like, we would predict that the distribution of the derivative
of Δtwaiting would have a mode around –1 (Fig. S2C). By contrast,
if mice adjusted their behavior incrementally we would predict
that the distribution of the derivative of Δtwaiting would have
a mode that was slightly less than 0. We indeed observed that
a distribution of the derivative of Δtwaiting around block switches
was very similar to the derivative for all probe trials, but slightly
shifted below 0 with a mode of –0.22 (Fig. S2C). Thus, these
data are consistent with a model in which mice infer the SD of
reward delays.
We further evaluated whether behavior was consistent with

a process of statistical inference in a subset (n = 2) of mice. If
mice are attempting to transition between a small number of
strategies, we would predict that by introducing a novel σdelay
(1,375 ms) intermediate between two previously trained σdelay,
mice would adopt a waiting time of one of the previously trained
σdelay blocks. We introduced the novel σdelay into sessions con-
taining the σdelay blocks trained previously. We found that in
these sessions mice adapted their Δtwaiting accurately to the new
σdelay = 1,375 ms block (Δtwaiting was significantly greater than
750 blocks and significantly shorter than 2,000 blocks; P < 0.001,
ranksum test) (Fig. 4C). Thus, the absence of local correlation
structure, gradual and assymetric transitions around switches in
σdelay, and training with a novel σdelay all support the idea that
mice choose a waiting time in the current trial based upon an
inferred property of the history of reward delays.

Online Computation of the SD Is Sufficient to Explain Waiting Times.
If mice are computing the σdelay, then how much prior timing
information do mice use for this computation? To produce
a quantitative estimate number of past rewarded trials (sub-
sequently referred to as the “memory length” or “N”) used by
mice to infer the σdelay, we assumed a parsimonious model in
which an iterative algorithm uses weighted averaging to calculate
the mean and SD of an array of numbers (17, 31) (SI Materials
and Methods). This model produces an estimate of the σdelay at
every trial with minimal requirements for storage of past in-
formation. To fit the behavioral data, a Δtwaiting on each probe
trials was calculated from the predicted σdelay and μdelay and
converted to a predicted Δtwaiting using the observed dependence
of waiting time upon σdelay and μdelay for each mouse (Fig. 2A).
The only free parameter is thus the number of previous trials (N)

used to update the predicted μdelay and σdelay. We fit the model
by calculating the mean-squared error (MSE) between model
predictions and observed Δtwaiting over a range of memory lengths
from 1 to 200 trials for each behavioral session.
A comparison of the Δtwaiting predicted from the model and

the observed Δtwaiting is shown for a single session in Fig. 5A. The
frequently changing σdelay in the block structure of the SIV task is
useful for revealing the contribution of previous reward delay
interval information. We considered three distinct task epochs to
evaluate the memory length being used by the mice: a L > H
transition, a H > L transition, and the final five probe trials of
any given block (“steady state”). In all cases we found that the
MSE as a function of N was concave. As discussed above, there is
an expected asymmetry between the L > H and H > L σdelay
transitions. Thus, in L > H transitions, mice should discard past
timing information and bias their computation of the reward
delay distribution toward more informative (recent) trials. In-
deed, we found that mice had a lower memory length in the L > H
transition (Fig. 5B) than the H > L transition (Fig. 5C). By con-
trast to transitions, in the steady state it is optimal to use as
much prior information as possible. We found that the data were
best explained by assuming that mice were using ∼50 trials of
prior reward timing information—significantly more than either
transition condition (Fig. 5D). Finally, we note that the model
provides a prediction of the rate at which Δtwaiting changes after
a block switch. We found that the mode of the distribution of
derivatives from the model (–0.19) and the behavioral data
(–0.22; t test, P = 0.2418) were not significantly different (Fig. 5E).
The behavior of mice during steady state performance was

poorly explained by either the previous trial or the local mean of
reward delays (Fig. S1). Estimation of the optimal linear kernel
also suggested that reward timing information was weighted
evenly for at least the prior 10 trials. However, around transitions
our data are most consistent with a model in which mice use
many fewer trials of reward timing information. Thus, we next
asked whether a model in which the SD was computed was still
a better predictor of behavior than the previous trial around
block transitions. We found that at transitions, as is the case in
steady state, an inference model was a better predictor of the
change in waiting time (Fig. 5F).

Discussion
Here we have used a unique operant paradigm to provide evi-
dence that mice can adapt their behavior to an inferred distri-
bution from which reward delays are drawn. Several lines of
evidence suggest that mice use reward delay times from previous
trials to develop a probabilistic model of the distribution of
reward delays: (i) Local correlations between recent reward
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(cyan) and from the highest to lowest (black) σdelay blocks and aligned to the block switch. Inset plots the number of errors following each block switch. The
L > H transition is characterized by a significant shift in waiting time at the first postswitch probe trial (paired t test). Note that there were 6–10 rewarded
trials between each probe trial. (C) For two mice that had learned the task with σdelay = [50, 750, 2,000] blocks, an intermediate σdelay = 1,350 block was
introduced (red points). Δtwaiting averaged across the first 10 sessions after the new block was introduced for all delays are shown. *P < 0.01; t test.
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delays and waiting times on subsequent probe trials were low; (ii)
mice adapted their behavior around sudden changes in reward
delay distributions in a manner consistent with the asymmetry of
statistical inference; (iii) mice rapidly adapted their behavior to
the SD of a new distribution that had not been previously trained;
(iv) waiting times gradually adjusted after block switches, consis-
tent with within block learning of the distribution; and (v) mice
could also adapt behavior to the mean reward delay even during
blocks where behavior was adapted to the SD on neighboring
trials. These observations were well described by a quantitative
model in which the sample SD and mean reward delay were
flexibly computed from 20 to 60 previous trials or reward timing
information.
The ability to accumulate past information over many tens of

trials is surprising given previous model-based analyses of animal
learning in variable environments (28). In behavioral tasks where
optimal (or near optimal) performance depends upon rapid
detection of transitions in reward probability, it has repeatedly
been observed that primates use locally weighted kernels to
adapt decisions (28, 29). By contrast, strong sensitivity to recent

trials is suboptimal in tasks where there is substantial uncertainty
about reward delivery (16). Likewise, in the SIV task described
here, optimal performance requires mice to remain relatively
insensitive to the substantial fluctuations in reward timing be-
tween trails. Taken together these results suggest that animals,
like human subjects, are capable of adapting the local weighting
of reward information according to the dynamics of the task.
Here we provide evidence that mice are capable of adjusting the
memory length over which reward delay information was accu-
mulated when appropriate (around block switches) or could ig-
nore the reward delay variation altogether (during exploration).
This suggests that sensitivity to local reward history is a learning
parameter that is flexibly controlled.
If reward delays shorter or longer than the current waiting

time policy were updated with (properly chosen) asymmetric
learning rates, then mice could adopt a waiting time that was
proportional to the SD through trials and error. A number of
observations in this study are inconsistent with a model in which
the waiting time strategy was updated in proportion to the re-
ward timing of the previous trial. For example, such a model
cannot account for our observation that mice approach faster,
wait longer, and explore for the same amount of time on neigh-
boring trials. Moreover, even around block transitions we found
that behavior was better described by a model in which the
sample SD was used to select waiting times (Fig. 5F). As a final
evaluation of this alternative model, we also examined steady
state behavior. A model in which waiting times were updated on
every trial should exhibit asymmetric fluctuations in waiting
times (only a small fraction of rewarded trials are equal to the
mean plus 1 SD). Thus, we compared the waiting time on probe
trials (an approximation of the waiting time policy) to the rela-
tive reward delivery time on the prior trial. When we examined
such trials (Fig. S3), we failed to find any evidence of asymmetric
learning rates. If anything, the slope (–0.08) was the opposite
sign of that predicted for learning rates that would produce
a waiting time proportional to the SD. Thus, we believe that the
observations presented here are most consistent with a model in
which mice integrated timing information from many trials of
prior experience to infer a probabilistic model of reward timing.
Recent work (25) has similarly argued that the behavior of mice
in reward timing tasks was better described by assuming mice
inferred a probabilistic model of environmental dynamics than
the assumption of incremental reinforcement learning.
We propose that mice use the differences between the actual

reward time and the mean reward time to compute the sample
SD in the SIV task. This is analogous to the computation pro-
posed (32) to explain how human subjects could compute the
uncertainty about the probability of reward delivery. The dif-
ference between the actual time of reward and the mean time of
reward is a “prediction error” (33). The transmitter systems and
circuits that underlie interval timing (6) are the same as those
that signal prediction errors (34, 35), and thus a common mech-
anism is attractive. Reinforcement learning describes a process
in which prediction errors are used to modify reward-seeking
behavior (36). Learning is completed when prediction errors
are eliminated and behavior stabilizes. Our data imply a dif-
ferent description of the role of prediction errors. In the case
of substantial variation in reward timing, behavioral perfor-
mance would stabilize despite persistent “errors” in prediction
(or risk prediction errors) (16). Rather, prediction errors would
be used to estimate uncertainty, but could reduce to zero in the
case of deterministic reward timing. Behavioral responses, in our
case waiting times, are then adjusted based upon properties of
the distribution of errors rather than upon the current prediction
error per se. Although the basic elements of such a model are
consistent with the critical role of dopaminergic signaling in the
striatum for timing (6), confirmation will require neural record-
ings from mice performing tasks with variable reward timing such
as the one developed here.
The inference of a model of the environment is thought to be

a critical feature of diverse behaviors in a number of organisms
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Fig. 5. Mice can use many trials of prior information to infer the SD. (A)
Δtwaiting on probe trials is shown as both individual trials (red circles) and
a running average (red line, Savitzy–Golay method, 20-trial window) for an
example session; rewarded trials are not shown. Predicted Δtwaiting from the
graded model with different memory lengths are superimposed (n = 25,
cyan; n = 100, dark cyan). (B and C) Normalized predicted Δtwaiting from
modeling centered on block transitions from low to high (B) and high to low
(C) reward interval distributions. Value of N for the model as shown.
Overlaid is the averaged and normalized Δtwaiting from behavioral data for
all mice (red lines). (D) Memory length (minimum value of the error function)
estimated for low to high (L > H) transitions, high to low (H > L) transitions,
and the last five probe trials of a block (steady state, S.S.). (E) Gray bars are
a replotting of the data in Fig. 4E. The derivative of the probe trial waiting
time was calculated for the model data calculated at the optimal memory
length for each mouse (blue line). The mean of the two distributions were
not significantly different. (F) Correlation between inferring model and
behavior data (dark line) was much higher than the correlation from linear
model and data (gray lines) at an L–H and an H–L block transitions.
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(37–40). The associative learning literature has focused exten-
sively on the capacity of organisms and neural circuits to learn
through incremental updates of synaptic weights or association
strengths. However, in a natural environment events are em-
bedded in a constant stream of variable stimuli and actions, and
the traditional associative learning model may be insufficient to
track such dynamics (11). By contrast to the associative models
often proposed for learning in rodents, inference in humans has
been argued to proceed through the application of internal sta-
tistical models to experience (41, 42). Here we have shown that
mice can generalize properties of reward timing across actions
(learning across block switches that involve a change in the
baited lever) and also use a distinct behavioral strategy for two
closely related actions despite the same prior information (ex-
ploration of the unbaited lever). Moreover, mice learned to
rapidly adapt their waiting time despite limited numbers of
observations and then stabilized that choice despite substantial
local fluctuations. Rapid shifts in behavior combined with sta-
bility in the presence of uncertainty and generalization across
actions are the strengths of “model-based” learning. Thus, our
data suggest that the inference of probabilistic models may be as
critical to reasoning about uncertain environments in mice as it is
in man (43).

Materials and Methods
Details of the SIV Task. We used nine adult (>30 g, >4-mo-old) male C57/Bl6
mice from the in-house breeding colony. In each block, levers were never
retracted and remained freely available to the mice at all times. Supra-
threshold vertical displacement of either lever during the ITI caused the
immediate illumination of the cue light. In a given block, movement of
correct lever (left or right) resulted in a delayed delivery of water in ∼85%
of trials (unrewarded trial spacing was selected from a uniform random

distribution of 6–10 rewarded trials). The opposite lever (right or left) was
never rewarded. Water was delivered to the reward port with a constant
mean delay of 3 s but with trial-to-trial delays chosen according to dis-
tributions with three different SDs (50, 750, and 2,000 ms). Extreme values
(occasionally chosen at random) were bounded by a minimal delay of 500 ms
and a maximal delay of 9 s. To complete a trial, the mouse was required to
enter and depart the reward vestibule at least once. Upon departure the
mouse was free to choose either of the two levers to start another trial with
only a minimal delay required for data transfer. The SD of the reward delay
and lever were random with respect to the associated lever (left or right)
and order of presentation within a daily session (generally 3–7 blocks).

Analysis of Behavioral Data. Analysis was performed using custom-written
routines in Matlab R2011a (Mathworks) and Igor Pro (Wavemetrics). Trials
were first classified into three types: a correct choice of the baited lever
followed by water delivery (rewarded), a correct choice of baited lever with
no water delivered (probe), and a choice on the unbaited lever (error). We
further defined a set of distinct time intervals: the time between successful
lever pressing and crossing the vestibule beam break (approach time), the
time between a successful lever press and the delivery of water reward
(“reward time”), and the time between a successful lever press and resto-
ration of the vestibule beam break (“waiting time”). See also Fig. 1B and
SI Materials and Methods.
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